Понятие бесконечности Зенона Элейского
Материалы / Ноль и бесконечное число / Понятие бесконечности Зенона Элейского
Страница 2

Пифагорейцы уподобляли числа геометрическим точкам: единицу - одной точке, некоторое другое число - группе точек, образующих некоторую геометрическую фигуру. Каждое число у них было дискретным набором единиц; таким образом, пифагорейская арифметика ограничивалась изучением положительных целых чисел и отношений целых чисел, которые не считались числами.

Всякая непрерывная величина - линия, поверхность, тело - могла быть отождествлена с некоторым соответствующим ей числом - “количеством”(длина, площадь, объем). Подобно тому как единица была общей мерой целых чисел, величины должны были иметь общую единицу измерения - быть соизмеримыми - и каждая величина отождествлялась с целым числом составляющих ее единиц.

Эта попытка отождествить целые числа с непрерывными величинами, интерпретировать непрерывное в терминах дискретного ни к чему не привела и быстро провалилась. Решающую роль, как уже говорилось, в этом сыграло открытие иррациональных чисел. В квадрате со стороной 1 отношение диагонали к стороне равно; оно не выражается в виде отношений целых чисел и, значит, вообще не имеет статуса в пифагорейской арифметике. Сторона и диагональ не имеют общей единицы измерения и называются несоизмеримыми. Взаимное соответствие между величиной и числом, знакомое пифагорейцам, оказалось нарушенным. Если каждому числу соответствует некая длина, то какие числа нужно сопоставить несоизмеримым величинам?

Именно в связи с открытием несоизмеримых величин в греческую математику проникло понятие бесконечности. В своих поисках общей единицы измерения для всех величин греческие геометры могли бы рассмотреть бесконечно делимые величины, но идея бесконечности приводила их в глубокое смятение. Если даже рассуждения о бесконечном проходили успешно, греки в своих математических теориях всегда пытались его обойти и исключить. Их затруднения перед явным выражением абстрактных понятий бесконечного и непрерывного, противоположных понятиям конечного и дискретного, ярко проявились в парадоксах Зенона Элейского.

Доводами Зенона были “апории” (тупики); они должны были продемонстрировать, что оба предположения заводят в тупик. Эти парадоксы известны под названием Ахиллес, Стрела, Дихотомия (деление на два) и Стадион. Они сформулированы так, чтобыподчеркнуть противоречия в понятиях движения и времени, но это вовсе не попытка разрешить такие противоречия.

Апория “Ахилл и черепаха” противостоит идее бесконечной делимости пространства и времени. Быстроногий Ахилл соревнуется в беге с черепахой и благородно предоставляет ей фору. Пока он пробежит расстояние, отделяющее его от точки отправления черепахи, последняя проползет дальше; расстояние между Ахиллом и черепахой сократилось, но черепаха сохраняет преимущество. Пока Ахилл пробежит расстояние, отделяющее его от черепахи, черепаха снова проползет еще немного вперед, и т. д. Если пространство бесконечно делимо, Ахилл никогда не сможет догнать черепаху. Этот парадокс построен на трудности суммирования бесконечного числа все более малых величин и невозможности интуитивно представить себе, что эта сумма равняется конечной величине.

Страницы: 1 2 3

Смотрите также

Наука в контексте культуры
  Во всем мне хочется дойти До самой сути. В работе, в поисках пути, В сердечной смуте, До сущности протекших дней, До их причины. До оснований, до корней, До сердцевины. Все время схват ...

Глобальные проблемы современности
Под глобальными проблемами человечества понимается комплекс острейших социоприродных противоречий, затрагивающих мир в целом, а вместе с ним и отдельные регионы и страны. Глобальные проблем ...

Категории диалектики
Находящемуся в постоянном движении и развитии миру соответствует столь же динамичное мышление о нем. “Если все развивается… то относится ли сие к самым общим понятиям и категориям мышления? ...