Основные достижения постклассической физикиМатериалы / История системного подхода в науке и технике / Основные достижения постклассической физики
Квантовая электродинамика возникла в рамках квантовой теории поля и до настоящего времени остается наиболее разработанной частью этой теории, основе которой лежит тезис, что поле (в частности электромагнитное) обладает не только непрерывными свойствами, как это предполагалось классической максвелловской электродинамикой, но и прерывными (дискретными) свойствами. Носителями последних являются кванты поля, точнее, соответствующих ему излучений. В случае света и других электромагнитных излучений эти кванты называются фотонами.
Начало XX столетия совпало с началом квантовой механики -
теории, ставящей целью объяснить свойства и движение элементарных микрочастиц -
дискретных частиц чрезвычайно малой (вплоть до нулевой) массы, к которым относятся как элементарные частицы, так и более сложные объекты микромира, например, атомные ядра и атомы в целом.
Первыми экспериментальными предвестниками нового подхода были открытие рентгеновских лучей и радиоактивности, а также первой из ставших известными элементарных частиц - электрона. Все эти события произошли в 1895-1897 гг. Однако непосредственно начало квантовой механике положила лишь в 1900 г. работа немецкого физика Планка (1856-1947). В 1900 г. он выдвинул предположение, что атом изучает световую или вообще электромагнитную энергию лишь определенными порциями - квантами.Гипотеза Планка на новом уровне возродила корпускулярную теорию светаПредпосылками квантовой концепции Планка-Эйнштейна было открытие фотоэффекта Герцем в 1887 г., электрона Дж. Дж. Томсоном в 1898 г. и объяснение фотоэффекта как испускания электронов Ф. Ленардом в 1899 г. На этом примере видна тесная преемственность классического естествознания с современным, постклассическим: переход от первого ко второму в ряде случаев совершается с такой непрерывностью, что граница не всегда сразу видна. В данном случае ее образуют публикации Планка и Эйнштейна 1900-1905 гг., знаменовавшие переход к новому, квантовому образу мышления.
Исходя их этого образа мышления, датский физик Н. Х.Д. Бор (1885-1962) усовершенствовал созданную в 1911 г.Э. Резерфордом (1871-1937) планетарную модель атома
, согласно которой почти вся масса атома сосредоточена в ядре, а вокруг ядра по круговым орбитам вращаются электроны. Однако по законам классической механики такая система не могла быть устойчивой: все электроны давно должны были упасть на ядра. Согласно внесенному в 1913 г. Бором уточнению, электроны, вращаясь вокруг ядра атома по орбитам стационарным орбитам, не излучают энергии, но переходя с одной из своих “допустимых" орбит на другую, излучают в каждом случае квант энергии. Позже Бором была разработана “копенгагенская интерпретация" квантовой механики, исходящая из того, что о самом существовании микрочастиц, тем более об их свойствах и движениях, можно судить только в контексте наблюдения.
Квантовая механика совершенно по-новому осветила микромир и его закономерности, о которых ранее имелись лишь смутные догадки. Эйнштейн в 1905 г., развивая идею Планка о квантованности электромагнитного излучения, предположил, что это излучение и в том числе видимый свет не только испускается порциями, но и вообще состоит из таковых, т.е. из квантов света (фотонов
), энергия которых пропорциональна частоте световых волн. Фотон может превращаться в электрон и позитрон - под последним имеется в виду положительно заряженный “двойник” электрона. Позитрон был открыт сначала теоретически, затем уже экспериментально, в космических лучах, и это открытие вызвало к жизни идею, что и у других элементарных частиц есть двойники-античастицы; каждая частица при становлении со своей античастицей аннигилирует. Помимо позитронов, были затем обнаружены антипротоны, антинейтроны и многие другие античастицы. Массы и спины частиц и соответствующих им античастиц равны, что же касается электрических зарядов и магнитных моментов, то и те и другие у частиц и их античастиц равны по величине и противоположны по знаку. Однако нет точных данных, насколько античастицы распространены во Вселенной: нет ли, в частности, таких крупных областей, которые были бы заполнены состоящим из одних античастиц “антивеществом” (проблема антимиров).
Сейчас известно уже довольно много видов элементарных частиц. Многое в классификации элементарных частиц остается пока гипотетическим и условным; например, не дали еще общезначимых результатов поиска гравитона - частицы, соответствующей гравитационному полю, как фотоны соответствуют электромагнитному.
Смотрите также
Наука в контексте культуры
Во всем мне хочется дойти
До самой сути.
В работе, в поисках пути,
В сердечной смуте,
До сущности протекших дней,
До их причины.
До оснований, до корней,
До сердцевины.
Все время схват ...
Глобальные проблемы современности
Под
глобальными проблемами человечества понимается комплекс острейших социоприродных
противоречий, затрагивающих мир в целом, а вместе с ним и отдельные регионы и
страны. Глобальные проблем ...
Философия марксизма
Философия марксизма – одно из важнейших направлений, вызывающее в
современную эпоху неоднозначную оценку, представлена в различных вариантах:
классический марксизм, нашедший отражение в труд ...